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CRITICAL LOADS OF SELF-SUPPORTING CYLINDRICAL
SHELL ROOFS

MicCHELE CAPURSO

Instituto di Tecnica delle Costruzioni, University of Naples, Italy

Abstract—In this paper we study the determination of critical loads for isolated self-supporting cylindrical shell
roofs under dead loads and uniform live loads. It appears necessary to introduce in the circumferential direction
a form of buckling more complicated than simple sinusoidal waves, and the problem is solved by the energy
method with the use of a simplifying hypothesis of Donnell’s theory. In order to apply this theory, we present
tables which allow values of the critical loads to be calculated directly in many cases. The results are smaller
than the corresponding values obtained in a recent study [1]. Some numerical examples close this paper.

1. INTRODUCTION

THE problem of equilibrium stability of self-supporting cylindrical shell roofs is certainly
widely discussed in the recent technical literature. A recent investigation performed by
Krall and Caligo [1] excels among the many studies on this subject (see [2-6]) because of
its formulation and numerical completeness; in this work the problem is posed and solved
approximately, making use of the classical energy methods connected with the well-known
principle of Dirichlet.

From these noteworthy results we are allowed to infer that the phenomenon of
instability always takes place because of a sudden buckling of the directrix with consequent
formation of lobes, the more numerous the larger the radius/span ratio, R/L; this applies
to shells which are not too long, that is excluding the possibility of structure yielding due
to progressive flattening of the directrix (Brazier’s effect—see [7-9]).

Denoting by u, v, and w the displacement components (Fig. 1), which characterize the
buckling of the shell as given in [1] we havet
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considering only the case of an even number “m” of half-waves.
In (1), the ratio between the coefficient of tangential components u and v, and the
coefficient of normal component w is arbitrary, but chosen in accordance with the logical

T Expressions (1), different from (23) of Note [1], can become similar to the latter if we set:

n=1 W = A—
° nR
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FiG. 1. Geometry of the shell and stress condition.

principle of rendering the extensional energy W, as small as possible, by annulling the
extensional strains ¢} and y,{'".

If we accept this principle we must immediately realize, with the help of numerical
data of Tables contained in [1], that the normal component w must prevail unavoidably
over the tangential components u and v. This appears clear when we consider the expres-
sions (1), bearing in mind that in most cases the buckling takes place with a very high
number of half-waves (m > 4). These remarks are essential in consideration of what fol-
lows. We want to consider now for a moment the expressions (1) and we observe that,
based on such assumption, buckling develops without change along the whole directrix,
thus affecting in the same way the tensile areas and the areas compressed by loads; that
is, in vague but efficacious words, the stabilizing and destabilizing areas in the static
condition of the structure equilibrium.

It seems reasonable to expect, on the contrary, as clearly confirmed by the results, a
buckling prevailingly limited to the most compressed areas of the surface and, conse-
quently, remarkably damped out when proceeding from the top toward the two edge
generatrices.t In fact, this appears evident from the study of a cylinder having complete
circular directrix compressed and bent by a load N capable to generate in the section
tensile and compressed areas due to the membrane stress §,. Figure 2, which appears in
Fliigge’s book [10], clearly shows the above mentioned feature.

Undoubtedly, we must observe that the static condition of self-supporting shell roofs,
even if simplified by considering only the membrane stresses, appears to be very different

1 Specific reference is made to the case of loads acting in the same direction of the normal inside the top
generatrix.
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from the elementary condition of the compressed and bent tube shown in Fig. 2. In fact,
of essential importance are not only the longitudinal stresses S, but also the cross stresses
S, and the shearing stresses T. We also must face the main problem of expressing, with

Fi1G. 2. Buckling shape of a thin cylinder eccentrically compressed.

less restrictions than (1), the buckling of the shell when passing from the ideal non-buckled
to the buckled state typical of the neutral equilibrium. Obviously, such a problem can be
solved by the traditional method as indicated by [1] in the case of a simple sinusoidal
waves buckling, but can be further simplified if we accept the correct deductions drawn
by the results of [1]. Among the other deductions, a very important one is that concern-
ing the great number of half-waves typical of the buckling of the surface when in neutral
equilibrium, since the other deduction (prevalence of w over u and v) ensues directly
from the first one.

Under these conditions we can accept the remarkable simplifications suggested by
Donnell, which lead to the well-known equations (see {11-14]) bearing Donnell’s name.
We do not discuss the acceptability of such simplifications, since this is a well-known
subject [15]; on the contrary, we will prove its validity also for the specific case we are
studying, making use of extensive numerical analysis. However, we would like to point
out the noteworthy advantages of such simplifications in comparison with the traditional
method : the considerable reduction of numerical operations, and, above all, the possibility
of carrying out an approximate analysis of critical loads by choosing arbitrarily only the
normal component w, in lieu of all the components u, v, w.

2. APPLICATION OF THE ENERGY METHOD TO THE ANALYSIS OF
CRITICAL LOADS OF SELF-SUPPORTING SHELL ROOFS IN
ACCORDANCE WITH DONNELL’S THEORY

C, is the equilibrium configuration (ideally non-deformed) of the shell subject to a load
represented by components p,, py, p,. Assuming the hypothesis of membrane behaviour,
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the internal stresses S,, S,, T can be obtained by solving the well-known equations:
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If p, = 0, on the two extreme generatrices, to such stresses we must add, for the equilib-
rium, two forces Z, and Z, absorbed by filiform elements placed near the two above-
mentioned generatrices, in order to eliminate the possible shearing stresses T resulting
from the solution of equations (2).

Such forces are determined by the following two relations:

dz, T
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and, if considered with the stresses deriving from (2), they express the static condition by
which the loads affecting the surface are transmitted by the latter to the supports. This
type of equilibrium, which is always possible when the deformation of the surface is
negligible, can loose its stability when external loads reach a certain value and becomes
neutral assuming a new shape very close to the ideal undeformed state.

Since C, is a general deformed state, it expresses only neutral equilibrium and only in
the case of a surface in perfect equilibrium as it was in the undeformed state C,. This
gives the possibility of establishing certain relations among the displacement components
u, v, w, which express the change of the structure from C, to C,.

Under particular conditions, with the assumption of some non-restrictive hypotheses
on the secondary condition C,, it is possible, with some acceptable simplifications, to
connect two of the above-mentioned relations; this way we can express directly two of
the three above-mentioned components as linear functions of the third one. This happens
just in the case we are studying, under the hypothesis of a large number of half-waves in
the buckled state C,, in the case of neutral equilibrium.

In fact, u, v, w being the displacement components of C,, for the first order strain
components we will have:
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where E and v are, respectively, the modulus of elasticity and Poisson’s ratio of the material
forming the shell; and S, 8S,, 6T are the membrane stresses variations caused by the
change C, — C,. For these latters we can assume, in accordance with Donnell, that the
equilibrium conditions along generatrices (x) and directrices () can still be expressed by:
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which are formally similar to the first two equations (2) and expressed as if the element
was not buckled and flexural stresses were not present. This assumption, with (4) and
(5), will yield the following two linear differential equations:
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which lead to the expressions of components u and v, after determining the expression
of normal component w. We can further simplify the problem, only formally now, by
assuming as unknown, in lieu of displacement components u and v, the stress function
F(x,y) connected with the internal stresses by:
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which satisfy identically the equilibrium conditions (5), and we obtain the relation between
F(x,) and w(x, y) from the compatibility condition (see [5]):
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which, in fact, expressed by the function F(x, ) with (4) and (7) gives:
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In this manner we have satisfied, at least approximately, the equilibrium conditions for
the displacement with respect to generatrices and directrices of the shell element in buckled
condition C,; now we can deduce further equilibrium conditions not directly, that is
geometrically, but with a variation procedure by imposing the extremum condition for
the function:

®=W+L3-L, (10)
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which physically coincides with the second variation of total potential energy when
passing from state C, to state C,.

The terms forming @ are, respectively, the elastic energy W, the second order work
L% of internal stresses S;, S,, T, and internal forces Z,, Z,, and the second order work
L, of external loads p,, p,, p,.

For this latter we must observe that, for the loading under examination, we will always
have:

L, =0 (11)

Furthermore, it must be noticed that for the second order work L%, actually the state
of stress of the shell in the main unbuckled state C, can be substantially different from the
state which is obtained through the simple hypothesis of membrane behaviour.

Even the extensional stresses S,, S,, T have a much more irregular distribution than
in the hypothesis of membrane behaviour, and, moreover, the bending moments M,
and M,, as well as the twisting moment H are present. For these latter, which would do
work because of the second order curvature changes, it was demonstrated that the internal
work L% related to the work of extensional stresses L%, depends upon the ratio 4/R and
therefore, since h/R does not exceed 2/100, is negligible [16].

Still to be resolved is the main problem concerning the internal work L%,, which should
be calculated by taking into account the actual extensional stresses S, S,, T rather than
those obtained through the simple hypothesis of membrane behaviour. However, it must
be observed that, if we add to the work of the membranal stresses S, S,, T the work of
balancing forces Z,, Z,, which is obviously not present if the actual values of S,, S,, T are
used, the value of extensional work L%, so calculated is very close to the value of the work
calculated through the actual stresses. This can be easily justified, even by intuition, if we
observe that the high values of the actual internal stress S; at the edges justify Z, and Z,
as impulsive and therefore can be considered as concentrated forces at the edges.

Since in this study we will consider a shell having semi-circular directrix, subject to
dead load g and to uniform overload on the horizontal plane p, the above considerations
are obviously necessary only for the tensile state due to dead load g, for which the internal
forces Z,, Z, are different from zero. In fact, in the case of live overload p the vanishing
of Z,, Z, confirms with sufficient accuracy the validity of the hypothesis of membrane
behaviour of the shell, and therefore the above considerations are of no use. Thus the
results which will be obtained are to be considered exact in the case of live overload and
sufficiently approximate in the case of dead load g.

2.1 Elastic energy expressions
The elastic energy W in the sum:

W =W+W. (12)

is expressed by W, flexural elastic energy, and W,, extensional elastic energy.t We have

+ In reality, it is demonstrated (see [6]) that, because of the directrices curvature we have a mixed term W
which is present in the elastic energy W of shell. In most cases such a term is quite insignificant compared to
the extensional elastic energy W, and the flexural energy W;, and we can neglect it.
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is a surface element of the shell; (", xiV, x, the flexural and torsional curvature changes
of the first order of the element; and ¢, &{", 7,5 the components of the first order of
extensional strains already considered in (4).

In accordance with Donnell for the first ones we have:
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Therefore, the flexural elastic energy is expressed as follows:
Eh? Pw 1 *w|? 2(1—v)|: 2wl *w 62w:|
W-éza—_—)f{(ﬁww R T oprlf® 19

R? ox oyl  ox? oy
and in w it appears as a quadratic form.
For the extensional elastic energy, in view of the use of function F, it is advisable to
obtain with equations (4) the following variation to the second equation (13):

W, = 2115hj {(aslmsz)z X ompe-as, ssal} a0 (7

Because of (7), we obtain the final expression of W, from equation (17):+

T In expressing the extensional energy we should consider W* absorbed by edge tension bars, which would
be expressed as follows when such tension bars are made or iron rods having an area 4¢; and A, respectively:

L L
Wk = %EfA“j ety dx+2EfAf2I e dx (18)
where E; is the elasticity modulus of the steel used, and &}’ and &{%’ the corresponding strains of the first order,
which can be calculated with the following equations:
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Actually, the energy (18) appears to be quite insignificant compared to the energy (17); thus we can neglect it.
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and we must note that, since we can express F as a function of w with equation (9), even
equation (20) appears as a quadratic form in w.

2.2 Second order work expressions
The second order work, limited in our case to L%, is generally expressed as follows:
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where &2, £{2), y,{? are the second order components of the extensional strains of the shell.
In accordance with Donnell, we can assume:
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and we obtain the following final expression for the second order work:
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L% is also expressed by a quadratic form of w. Now we can calculate the critical loads
of the shell for various load conditions.
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¥ Also in this case equation (23) is approximate, inasmuch as the second order work is actually the sum
LY = LA + L%+ Lig+ LY. @ty

where the first two terms represent the work of extensional and flexural stresses for second order extensional
and flexural strains, and the other two, due to the directrix curvature, represent the mixed terms caused by the
fact that stresses are not orthogonal to the strain components (see [6]). On the other hand, if we limit, as in our
case, the definition of the static equilibrium to the membrane stresses, having

Ly = L%. =0
equation {21Y can be reduced to
LY = L3+ LY

Thus the approximation is limited only to the term L%, which appears negligible compared to the first one.

Actually, in [6] it is clear that the correct calculation of L% through the actual stresses of flexural solution of
the shell and the complete expression (21) affects but very slightly the critical loads; therefore the use of
equation (21) appears sufficiently approximate,
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The variation of equation (10) with respect to w, in accordance with (16), (20), and (23),
gives the Eulerian differential equation:

Pw 2w 1 0% 1 &*F 1 ( ?w 2T ?*w S, w
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with the boundary conditions for a general case.

Equation (24), together with equation (9), is the basic system governing, in accordance
with Donnell, the problem of elastic equilibrium of thin cylindrical shells. It is also possible
to obtain a single differential equation by expressing 0°F/dx* as a function of w with
equation (24) and substituting it into equation (9) and differentiating with respect to x.
This leads to the equation:

(24)
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which is known as Donnell’s equation.

In our case we cannot solve in closed form equation (25) or the system (9), (24); there-
fore we will use the approximate solution of the buckling problem, giving an appropriate
expression to the normal component w and obtaining the critical loads from the solution
of the extremum problem:

50 =0 27)

for each small variation of the parameters left unknown in w.

3. CALCULATION OF CRITICAL LOADS FOR SEMI-CIRCULAR
ISOLATED SHELL ROOFS

As indicated in the introduction, one of the main objects of this research work is to
investigate how the choice of a buckling shape affects the critical loads. The choice is now
limited to the component w, which will be taken as

w = wo(l +1 cos 2yr) cos my sin x/L. {28)

Equation (28) is different from the last of equations (1) because of the correction factor
(147 cos 2y) which appears to be of basic importance for the numerical determination
of critical loads in the case of dead load as well as, and even more, in the case of uniform
live load at the base. In fact, it is sufficient to notice that equation (28), even including the
case of simple sinusoidal waves buckling for # = 0, permits the amplitude of the directrix
waves to decrease considerably by moving from the top toward the edge generatrices in
accordance with numerical values of parameter 7.
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We will limit the analysis, as in [1], to the case where m is even, excluding the case
m = 2, from the examination of tables contained in [1], appears to be quite insignificant.}
Function F(x, yy) with equation (9) can be determined through the following equation:

o*F 2 O*F 1 0*F n’Eh nX
N S e O Bl T § | in ——
7 TR 32 aw2+R4 30* =~ IR wo(1 47 cos 2} cos my sin T 29
and corresponding boundary conditions on extreme directrices and generatrices.

In the case of an isolated shell, the boundary conditions on the two extreme directrices
are expressed as, with the known hypothesis of unextensional transverses unable to absorb
stresses normal to their plane:

=0 65;=0 (x=0x=1L) (30)
and are expressed as follows:
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The boundary conditions on two extreme generatrices are expressed as follows,
neglecting the effects of edge reinforcement bars:

5S,=0, ST =0 (w = i% 32)
and are therefore expressed by the following relations:
&*F *F n
N | BN

4 In fact, from the tables of [1] it appears that only in one case does the shell buckle with a double half-wave
and, more specifically, in the case of live load condition p and for the geometrical ratios R/L = 001 h/R = 0-02.
In this study the case m = 2 has been examined separately.

1 Actually, without neglecting the effect of the reinforcement bars, the second relation (33) should be written
as:

d(éZ,)
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the variations of stresses developing during the passage Co — C;. In consideration of (7) and (22} the second of
equations (33) should be expressed as follows:
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Actually, the exiguity of ratio:
p = E.A/ERR (3h

permits to study the problem with sufficient approximation using the second of equations (33} in liew of the
more correct (35) and (36) which can be reduced to the first one for vanishing p.



Critical loads of self-supporting cylindrical shell roofs 127

With boundary conditions (31) and (33), equation (29) gives for F:

2
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Now we know the stress function F and we can calculate the extensional and flexural
elastic energy of the shell. In fact, with

_ 8 coshnf—1
L g (40)

from equations (38) and (20) we obtain for the extensional elastic energy:
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while, from equations (28) and (16) we obtain for flexural elastic energy:
__mEL 5., 2{ 2 2
Then, with

2 o pt 6

00={(1—v)—-0—1—ﬁ+4 } 10
o, = 31—v)o— ! +L 10° @3)

: carards

1 1 1 adpt
o= boerfe ol l] ot



128 MicHELE CAPURSO
the total elastic energy of the shell can be expressed as:

-6
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We must now determine the second order work L% for the two loading conditions
examined.
In the case of dead load g the membrane stresses relative to initial state C, are repre-
sented by the well known expressions:

gl?lx x°
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S, = —gRcosy

to which we add, for the necessary equilibrium conditions, the tensile forces:

Z, = Z, =glL? (%—g-) (46)
Therefore, if we set as in [1]:
- @)
we obtain from equations (23) and (28):
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In the case of live load p considered to be uniformly distributed in the horizontal plane,

the membrane stresses in state C, are represented by:

3pLl3[x x
S = — R (L L2) cos 2y
2
T= 3pL (1——E sin 2y
4
S, = —pRcos? y
and here
Zl = Zz = 0.
Therefore, if in accordance with [1], we now have:
1 E.107¢
= — ."‘-_2—}.‘,‘
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The second order work L% with equations (23) and (28) can be written as follows:
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2p < Z(mz +4).
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(52)

(53)

(54)

In both cases the second order variation of total potential energy @ expressed by

equation (10) is as follows:
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thus the extremum condition :

oo
Fwe =0
gives:
_oot+omto,n’
T votvan+van’
while the minimum condition:

a_
dr]—

(55)

(56)

(57)

(58)



130 MICHELE CAPURSO

permits the determination by one of the two roots:
Moz = G270 —CoV2 {_ 1 i\/[l +(ffz?’l —0172)(0071 ’2“517’0):” (59)
027170172 (6370 —0072)

the value * for which the ratio:
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represents the minimum value of ratio (57) for every value of m previously determined.
The minimum value of A* with respect to m, (even integer and higher than two) finally
gives the desired critical multiplier A .

We can observe that the expressions {43), (49), and (54) are valid when m is even and
different from two. For m = 2 such coeflicients cannot be obtained by said equations,
but must be calculated by repeating the calculation of the energy and second order work.
We do not repeat here such results which are completely useless (see [1]) for the numerical
work.

¥

(60)

4. NUMERICAL ANALYSIS FOR THE CASE OF SIMPLE SINUSOIDAL
WAVES BUCKLING

Before starting the calculation of critical multipliers A, for the load conditions under
consideration, we want to show the acceptability of approximations connected with
Donnell’s theory for the case we are examining, by means of a numerical analysis of
minimum multipliers 44 .-

Such multipliers, obtained by (57) for # = 0, represent the minimum with respect
to m, of ratio:

Oy
Yo

lo = (61)
and necessarily, cannot be too different from A, obtained in [1}, since in this case the
prevailing part of the buckling shape is identical.

The results obtained, shown in Table 1 for the dead load g, and in Table 2 for live load
p, clearly confirm our hypotheses. In fact, from Tables 1 and 2, numerically developed
with the assumption that v = 0 in (43), we can obtain as extreme values of the percentage
differences compared to the corresponding values shown in Tables II and ITT of paper [1]:

Smin = = 8‘5% Smax = +7% (62)
in case of dead load, and
Smin = 10% Smax = 0% (63)

in case of live load.

The above differences are not to be considered errors due to the approximations
relative to Donnell’s theory, since also comparison values of Tables contained in [1] are
approximate. On the contrary, the smallness of such differences confirms that, having
the same normal component w, the traditional method with an appropriate, even if
arbitrary, choice of components u and v, gives results which are substantially similar to
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the results obtained with the simpler theory of Donnell. In view of this, the numerical
data of Tables 1 and 2 can be used for comparison when we investigate the influence on
the critical multiplier of a buckling shape closer to the reality than the simple sinusoidal
waves buckling typical of subject results.

5. NUMERICAL ANALYSIS FOR THE CASE OF DAMPED SINUSOIDAL
WAVES BUCKLING

Tables 4 and 5 give the critical multipliers A, for the same geometrical ratios of Tables
1 and 2 with the procedure outlined at the end of Section 3 above.

Such tables have been numerically developed with the assumption, for the coefficient
calculation (43), that v = 0 and varying m from 4 to 24, two units at a time. The case m = 2
has been examined separately.

From a study of these tables the importance of factor # on the numerical value of
critical multiplier becomes clear. Iif we compare them with Tables 1 and 2 we notice a
decrease of 30 per cent and more for the multipliers relative to dead load g, and a decrease
of 50 per cent and more for the multipliers relative to live load p.

On the contrary, the number m of half-waves expressing the buckled condition C,
appears substantially unchanged if compared to the number of half-waves obtained in
the case of simple sinusoidal waves buckling. The variation of the percentage differences
for the multipliers of dead load g and the multipliers of live load p is evident : in fact, since
because of g the tensile stresses affect almost exclusively the two edge reinforcement bars,
while in the case of p they affect a larger zone, a decrease of the half-waves amplitude is
more important in this case than in the previous one. Notwithstanding the remarkable
decrease, sometimes the critical loads

n E.107¢

Berit = 57 1_—‘)2@ erit

1E.10°° (64
Periv = 6 1—y2 et

remain so high that we can foresee for them stresses o ,;, above the proportionality limit
6,. Assuming as comparison tension o, the maximum value of two principal tensions
o, and gy, present in the center cross section in correspondence with the top generatrix
of the shell, and

E = 2x10° ton/m?
v=102 (65)
o, = 1500 ton/m?

we marked in Tables 3 and 4 the lines limiting the range of critical multipliers for which
we have:
O crit < o.p (66)

Such range is valid only if the mechanical characteristics of the material are the same
as the ones assumed in equations (61), that is the standard quality of concrete. For other
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TABLE 1. (4¢r). MINIMUM VALUES OF Ay AS GIVEN BY EQUATION (61) AND RELATIVE VALUES OF m FOR g |Z0ciy = 2% 514‘?’7, 0 crit
10%h/R
0-2 0-4 0-6 08 10 1-2 16 2:0
R/L
0-10 0228 (4 1-408 (4} 4494 (4) 10437 (4 20191 (4) 34708 (4) 81-841 (4) 159458 (4}
0-20 0-406 (6} 2733 (6) 7:639 (4 14796 (4) 25904 (4) 41953 (4 92-821 (4} 175304 (4)
030 0-625 (8) 3473 (6) 10-144 (6) 22739 (6) 43-230 (6) 68-087 (4) 129920 (4) .225:300 (4)
0-40 0791 () 4960 (8) 13-051 (6) 26963 (6) 49-069 (6) 81-421 "(6) 185:050 (6) 335-585 (4)
050 1018 (10) 5709 (8) 17-240 (8) 34764 (6) 59-557 (6) 95083 (6) 206926 (6) 387467 (4)
0-60 1-174 (10} 6946 . (8) 19-383 (8) 42-575 (8) 76:246 (6) 116463 (6) 240:020 (6) 436-208 (6)
0-70 1-430 (10} 8294 (10) 22573 (8) 47-423 (B) 87-200 (8) 145-592 (8) 286-542 (6) 503338 (6)
0-80 1:581 (12) 9-189 (10) 26914 (8) 54014 (8) 96653 (8) 158-715 (8) 348-097 (6) 590-999 (6)
090 1779 (12} 10-383 (10) 29-988 (10) 62-599 (8) 108-791 (8) 175:344 (8) 385-826 (8) 700-435 (6)
1-00 2-040 (12) 11919 (10) 32-798 (10) 71-579 (10) 123-874 (8) 195-808 (8) 421134 (8) 783-651 (8)
1-25 2:511 (14) 14-692 (12) 42-720 (10) 87-693 (10} 159-009 (10) 263-254 (10) 538-490 (8) 970-463 (8)
1:50 3-048 (16) 18-341 (14) 51-310 (12) 110-814 (10) 193-888 (10) 313-877 (10) 649-127 (10) 1224465 (8)
175 3-641 (16) 21-363 (14) 61-611 (12) 130-337 (12) 239-573 (10) 379-706 (10} 819-258 (10) 1527082 (10)
2-00 4-169 (18) 25-285 (14) 72-386 (14) 153-063 (12) 227-219 (12) 458636 (12) 973-934 (10) 1794-446 (10)
2.25 4-810 (18} 28680 (16) 82-830 (14) 180-585 (12) 321-721 (12} 526-849 (12) 1159-427 (10) 2116340 (10)
2-50 5-367 (20) 32-582 (16) 95-245 (14) 204-020 (14) 374-092 {12) 607222 (12) 1346929 (12) 2496662 (10)
273 6022 (20} 36-860 (18) 107-575 (16) 231-172 (14) 425-517 (14) 700-275 (12) 1540-808 (12) 2901-718 (12)
300 6-648 (22) 42:467 (20) 120-013 (16) 262-183 (14) 478-973 (14) 796-592 (14) 1763-881 (12) 3311296 (12)
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TABLE 2. (dg ). MINIMUM VALUES OF dp AS GIVEN BY EQUATION {61) AND RELATIVE VALUES OF m FOR # {Poeric = 3 —I—vz—AoC;“
10°h/R
02 04 06 0-8 10 1-2 16 20
0-10 0-186 {4) 1-149 (4) 3668 (4 8519 (4 16480 (4) 28-328 (9 66-798 (4) 97-382 (D)
020 0373 (6) 2:512 (6} 6235 (4) 12076 (4) 21-143 (H) 34242 (4 75760 (M) 143082 (4}
0-30. 0-597 (8) 3181 (&) 2323 (6) 20897 (6) 38-467 (4) 55572 (4) 166-040 (4) 183-889 (4
040 0755 (8) 4-735 (8) 11994 (6) 24-779 (6) 45096 {6) 74827 (6) 174622 (4) 273902 (&)
0-50 0979 (10} 5-449 (8) 16458 (B) 31949 (6) 54-134 (6) 87-384 (6) 190-170 (6) 356091 (6)
0-60 1-140 (10) 6-631 (R) 18-502 (B) 40-642 (8) 70-072 (6) 107032 (6) 220-584 (6) 400355 {6)
0-70 1:389 {10) 8053 (10) 21-514 (8) 45269 (8) 83240 (8) 135247 (6} 263-339 (6) 462-580 (6}
080 1549 {12} 8922 {10) 25692 (B) 51561 (8B) 92264 (8) 151-508 (8) 319909 (6) 543-141 (6)
090 1743 (12) [(-082 (10) 29-118 (10} 59-756 (8) 103851 (8} 167-382 (8) 368-305 (B) 643-716 (6)
1-00 199 (12) 11-574 {10) 31846 {10) 69-501 (10) 118248 (8) 186916 (8) 402-610 (B) 748-064 (8)
1-25 2-474 (14) 14-396 {12} 41-480 {10) £5-148 (10) 154-394 (10) 253-065 (8) 514-037 (8) 926-394 ()
1.50 3.014 (16} 18070 (1) S0-276 (12) 107-598 (10} 188-261 (10} 304-768 (100 667-552 (B) 1168-862 (8)
1-75 3600 {16) 21047 (14) 60-371 (12) 127712 {(12) 232-620 (10) 368-686 (10) 795-482 (10) 1477-261 ()
200 4132 (18) 24911 (14) 71-316 (14) 145-981 (12) 271-637 {12) 447787 (10} 045-669 (10) 1742-368 {10}
225 4767 (18) 28-356 (16) 81-605 (14) 176949 (12) 35242 (1) 516-239 (12} 1125-779 (10) 2054920 (10)
2-50 5328 (200 32:214(186) 93836 {14) 201003 (14) 366559 (12) 504993 (12) 1319-803 (12} 2424-205 (10)
2-75 5979 (200 36-5330 (18) 106-357 (16) 227-753 (14) 419-224 (14) 686-172 (12) 1509-778 (12} 2843282 (12)
3-00 6608 (22) 40-4137 (18) 118-654 (16} 258-306 (14) 471889 (14) 784811 (14 1728:359 (12) 3244611 (1)
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Tamre 3. (4,,). MINIMUM VALUES OF A* AS GIVEN BY EQUATION (67} AND RELATIVE VALUES OF m FOR ¢ [ £, = 5 W.ﬂ.
163k/R
02 04 06 0-8 1-0 12 16 20
R/L
10 G166 i4) 0949 {4} 1949 (4 6733 (4} 13029 ¢4 22327 (4 52478 (4 102091 (4)
20 0282 (&) 1924 {6} 5648 (&) 10565 (4) 18011 (4) 28-600 (4} 61-698 (4} 114859 i4)
0-30 0446 (%) 2504 (8) 7-188 (6) 15981 (6 30-254 (6) 49-330 (4) 91-092 (4} 154082 (&
040 572 %) 3528 «8) 9421 {6) 19189 (6} 34622 (6) 57135 (6} 129-069 (6} 234835 (4
050 718 {1 4-086 18) 12:237 ) 25063 (6} 42-440 (&) 67202 (6) 144783 (6) 260618 (6)
0-60 (-840 {10} 3006 (8} 13805 (B 30§56 (B} 54-758 (6] 82840 (6) 168:508 8) 303851 (6)
G0 -7 {12 5885 (10) 16113 (B 33651 18) 61-612 (8) 102603 (8 201613 {6) 350781 6}
80 1122 (12 6-532 (10} 19304 (8) 38-399 (8) 68336 (8) 111-826 {8) 245001 (6} 411-587 (6)
0-90 1265 142 7-394 (1) 21-211 (10) 44-566 (8} 76957 (8} 123-508 {8) 270-412 (8) 486-306 (6}
1-00 1-440 (14) 8502 (100 23-209 {10) 50458 (10) £7-642 (8) 137856 (8) 294723 (8) 346642 (R)
1-25 1774 {14) 10:376 (12) 30253 (1) 61-760 {10) 111-628 (10) 184-445 {10) 375209 (8) 673054 (8)
1-50 2143 {16) 12-883 (14) 36055 012) 77939 {10} 135800 (10) 219-243 (10) 483-340 {10) 483806 (8)
175 2562 {16) 15001 {14 43254 (12) 91-183 (10} 167:365 (10) 264377 (10 568-143 (10} 1056: 742 (10}
200 2922 {18) 17750 (14} 50616 (14) 106894 (12} 193-128 (10} 319436 (12 672675 {10% 1236110 {10}
223 3371 (20) 20060 (16} £7-855 (14} 125855 (148) 223-635 (1) 365551 (124 97642 (10) 1451-460 (10)
250 3753 (2 22-777 (16) 66-456 (14) 141976 (14} 259-486 (12) 420285 (12) 929992 (12) 1705171 (10)
273 4211 (20) 25714 (18) 74926 (16} 160-640 {14} 295-184 (14) 483-557 (12} 1060-971 (12) 1995153 (12)
300 4-641 122) 28-450 (18} 83512 (16) 181-941 (14} 331-727 (14) 551047 (14) 1211-462 (12} 2270-503 (12)
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TABLE 4. (4.). MINIMUM VALUES OF A* AS GIVEN BY EQUATION (67) AND RELATIVE VALUES OF M FOR P | Peric =

1 E.107°,

A,

6 1 "2 crit
102h/R
02 04 06 08 1-0 12 16 20
R/L
010 0134 (4) 0-738 (4) 2:260 (4) 5156 (4} 9887 (4) 16910 (4) 39-670 (4 58429 (2)
020 0212 (6) 1-367 (6) 4402 (6) 8441 (4 14-218 (4) 22360 (4 47599 (4) 87908 (4)
030 0302 (6) 1-819 (6} 5137 (6) 11337 6 21-380 {6} 36:228 (6} 72054 (4} 120457 {4)
040 G391 (&) 2374 (8) 6-841 (6} 13758 (6) 24633 (6) 40-457 (6) 90908 (6) 173030 (6)
0-50 0469 (10} 2764 (8) 8216 (8) 18-135 (6) 30408 (6) 47-81% (&) 102-159 (6) 189-376 (6}
0-60 0551 ¢10) 3405 (8) 9:292 (8) 201198 (8) 37-796 (8) 59078 (6) 118965 (6) 213-235 (6)
070 0649 (12) 3-828 (10) 10-868 (8) 22-557 (8) 41155 (8) 68391 (8) 141-993 (6) 245458 (6)
0-80 0717 (12) 4253 (10) 12:721 (10) 25740 (8} 45618 (8) 74454 (8) 166169 (8) 286:380 (6)
0-90 0-810 (12) 4-818 (10) 13-749 {10) 29838 {8) 51-298 (8) 82089 (8) 179124 (8) 335838 (6)
1-00 0907 (14) 5451 {12y 15037 (10) 32604 (10) 58271 (8) 91390 (8) 194-697 (8) 360433 (8}
125 1-119 (14 6600 (12} 19-478 (12) 39774 (10} 71-769 {10y 118463 (10} 245513 (8 439740 (8)
1-50 1-338 (16) 8-087 (14} 22823 (12) 49744 (12} 86-848 (10) 140092 {10) 308-545 (10) 544928 (8)
1-75 1-595 (18) 9:402 (14) 27-289 (12) 57-470 (12} 105722 (12) 167-855 (10) 360-585 (10) 670-352 (10)
200 1-812 (18) 11-072 (16} 31617 (14) 67114 (12} 121:223 (12) 200221 (12) 424:241 (10) 779822 (10)
225 2:082 (20) 12:458 (16) 36051 (14) 78422 (14) 139-820 (12) 228-574 (12) 459-830 (10) 910-360 (10)
250 2:316 (20) 14-121 {16) 41-296 (14) 88233 (14} 161-561 (12) 261-801 (12) 579-608 (12) 1063-574 (10)
275 2:597 (20) 15-880 {18} 46362 (16) 99-575 {14} 183-027 (14 300077 (12) 659-037 (12) 1239932 (12)
300 2:854 (22) 17-548 (18} 51-582 (16) 112-481 (14) 205199 (14) 140-981 (14} 750-136 (12) 1406:921 (12)
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materials or other mechanical characteristics, such range has no meaning and it is, there-
fore, necessary to verify case by case if 6.4 S 0.
In case of :

0 7
ok > o, (66)

where ¢9), is the maximum comparison tension corresponding to the instability of the
shell made of material having undetermined linear elasticity, we can obtain limits inferior
to the actual critical load with the procedure indicated in {1]. Such procedure essentially
consists of substituting in (64} the initial elasticity modulus E with the tangential modulus
for the shell:

Oeri
E = E— 67)
acrit

and the approximate value of 6, can be obtained from:

E
Oorit = K- 71'K2 \/F)— (68)

crit

where K, and K, are the material constants of the well-known Tetmayer equation:

!
Oerir = K(— K, (69)
for the instability of short columns.
For concrete the authors [1] suggest:
Kl = 4000 ton/mz
(70)

Kz = 2179 ton/m2

(K, is also the yield stress of the material).
In every case we must verify for reinforced concrete shells if, prior to instability, we
have a collapse due to failure of the reinforcement provided to absorb the tensile stresses.

6. TWO SPECIAL CASES

From the studies performed by Jakobsen (see [1]) it appears that most shells realized
so far can be classified under two types in accordance with the following geometrical
ratios:

I, long: R/L= 036 h/R =0694x 102
Type i
.11, short: R/L = 270 h/R = 0300 x 1072

For such types we give in Tables 5 and 6 the numerical results of performed calcula-
tions, directly compared with the results obtained in {1}, in order to clearly show the
differences obtained with the proposed procedure. (Results always apply to the case
v=20)

(7n
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TABLE 5. MINIMUM VALUES 4, FOR TYPE | SHELLS

In accordance In accordance with In accordance with
Type | with | 1] proposed theory forn = 0 proposed theory for # (min.)
. m /:.C,,, m " Jeerin m "
Load g 16929 6 16998 6 0 12-098 6 0-702
Load p 16-004 6 15621 6 0 8-679 6 1-271

Figures 3 and 4 show the directrix buckled shapes obtained in accordance with
numerical data of Tables S and 6 in conformity with expression (28).

In drawing the buckled shapes we used only the normal component w, neglecting the
effect of tangential component v. These figures clearly confirm the importance of the
waves damping in the buckled shape of neutral equilibrium C, for long shells as well as
for short ones.

TABLE 6. MINIMUM VALUES 4, FOR TYPE 11 SHELLS

In accordance In accordance with In accordance with
Type 11 with | 1} proposed theory forn = 0 proposed theory for x{min.)
Feexin m Jeerin m n Ferit m i
Load g 18-041 20 16848 18 0 11-775 18 1-213
Load p 17-955 20 16697 18 0 7275 18 2-544

FiG. 3. Buckling shape of long cylindrical shell roof (a) in case of dead load (b) in case of live load.
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FIG. 4. Buckling shape of short cylindrical shell roof (a) in case of dead load (b) in case of live load.

7. NUMERICAL EXAMPLES
The following numerical examples are an application of what was mentioned above:
{(a) Reinforced concrete shells having :
= 10m L=50m h=4cm.
We have:
R/L =102 h/R = 0-4x 1072
therefore, from Tables 3 and 4:
Agerie = 1:924
Aperit = 1:367.

Assuming the concrete mechanical characteristics to be those expressed by (65), we
have:

n )<2x106><10_6
gcrit‘ﬂ 1_004

1 2x10°x107°
Derit = 6X 1—004

x 1:924 = 0-525 ton/m?
x 1367 = 0-475 ton/m?.

For stresses o, corresponding to the generatrix of each cross center section we have
from (45) and (50):

L2
Oxgerit = —%%h— = —820 ton/m?

3pcrit[‘2 _

Oxperit = ~—gpp— = —1113 ton/m?
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therefore, as can be deduced from the tables, in both cases instability takes place in a
proportional elastic range.

If we want to consider the simultaneous presence of g and p, having fixed g and variable
p, and determine the load p, corresponding to the shell unstability, we can assume as a

first approximation:

crit

De = Derit (1_' & ) (72)

which corresponds to the linear expression of boundary curve of stability field p, g.
In our case, assuming

g = 0-130 ton/m?
we have, from (72)

0-130

il RS 2
0.525) 0-357 ton/m*.

p. = 0475 (1

{b) Reinforced concrete shell having geometrical characteristics :
R=9m L=25m h = 625cm.

We have:
R/L=036  h/R=0094x10"2
typical of long shells.
From Table 5 we have:
Agerin = 12:098
A = 8679

perit

and assuming concrete mechanical characteristics as per (65):

Lerit = 330 ton/m?
Perie = 3016 ton/m?
we have
Orgerit = 917 ton/m?

Orperic = — 1257 ton/m>.
If we apply equation (72), assuming that

g = 0-190 ton/m?
we have

0190

-7 = 2
3.301) 2:934 ton/m?.

p. = 3016 (1
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8. CONCLUSIONS

We can conclude by saying that the instability of self-supporting cylindrical shell
roofs occurs by buckling of the directrix with consequent formation of various lobes which
damp out when proceeding from the compressed to the tensile areas.

Such a phenomenon can occur in the elastic as well as in the inelastic range, depending
upon the values of the following ratios: thickness/radius, h/R, and radius/span, R/L, as
well as the proportionality limit o,. However, in many cases the critical stresses o, are
very high, and therefore they have no meaning if the changes of elastic modulus E are not
taken into proper account.

In the inelastic range we do obtain acceptable values of the critical loads through
the considerations mentioned at the end of Section 5 above; however, they must be con-
sidered as approximate values and treated accordingly.
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Résamé—Dans cette theése nous étudions la détermination des charges critiques au cas de toits a carcasse cylin-
drique isolés et indépendants, soumis & des charges mortes at & des charges vives uniformes. Il semble &tre néces-
saire d’introduire dans la direction circonférentiel une forme de ftambement plus compliqué que de simples ondes
sinusoidales, et le probléme se résout par la méthode d’énergie tout # se servant d’une hypothése simplifiée de la
théorie de Donnell.

Afin de pouvoir appliquer cette théorie nous présentons des tables qui permettront de calculer les valeurs
des charges critiques directement dans plusieurs cas. Les résultats sont plus petits que les valeurs correspondantes
obtenues dans une étude récente. Quelques exemples numériques concluent cette étude.

Zusammenfassung—Die Arbeit behandelt die Bestimmung kritischer Belastungen fiir freie selbsttragende Schalen-
dicher unter ruhender und gleichmiBiger Last. Es scheint notwendig in der Umgehrichtung eine Knickform
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einzufiihren die komplizierter ist als eine einfache Sinuslinie, die Lésung erfolgt mittels einer vereinfachten
Hypothese der Theorie von Donnell. Um diese Theorie anzuwenden wird eine Zahlentafel gegeben, die eine
einfache Errechnung in vielen Fillen ermoglicht. Die Resultatswerte sind geringer als die Werte die in eincr
dhnlichen Arbeit vor einiger Zeit erhalten wurden. Einige errechnete Beispicle beenden diese Arbeit.

AGerpakt—B 3108 cTaThe MBI B3yYaeM BeOPMANHIO KPHTHYECKHX HArPY3OK IS H30JIHPOBAHHBIX CAMOTIO-
JOHMPAFOLIAXCH UMIHHADHYECKUX KPR B BUIE CBOAA 06GOMOUKH NOA MEPTBBIME HATPY3KAM# W OAHOPOI~
HBIMH BpEMeHHBIMH Harpyskamy. Oxasanock HeoOXOAMMBIM BBECTH B CMbICAe poraaxd ¢opmy wiruba
GoJsiee ClIOKHYIO, YeM NPOCThIE CHHYCOMIANbHBIE BOJNHBI M NpobneMa pa3pelaercs METONOM BHEPTHH ¢
NpHMEHEHNEM YupoLeHHoH runotesst reopuu Honrenna (Donnell’s). YUTobsl NPpUMERNTS 3TY TEOPHIO Mbl
npeanaraeM TabAKUBL, KOTOPHIE BO MHOTHX C/IyYasix [TO3BONIMIOT HPAMO PACHHTATEH 3HAYEHUE KPHTHYECKHX
Harpyzok. Pe3ynbTarsl MeHbile, €M COOTBETCTBYIOIUME 3HAYCHUS KPUTHYCCKHMX HATPY30K, HOJIYYCHHBIE
HegapunM neenepopanuem (I). Heckonpko mm@pponsix NpUMEPOB 33XKanYMBAIOT 3TY CTaThiO,



